Hidden semi-Markov model based speech synthesis
نویسندگان
چکیده
In the present paper, a hidden-semi Markov model (HSMM) based speech synthesis system is proposed. In a hidden Markov model (HMM) based speech synthesis system which we have proposed, rhythm and tempo are controlled by state duration probability distributions modeled by single Gaussian distributions. To synthesis speech, it constructs a sentence HMM corresponding to an arbitralily given text and determine state durations maximizing their probabilities, then a speech parameter vector sequence is generated for the given state sequence. However, there is an inconsistency: although the speech is synthesized from HMMs with explicit state duration probability distributions, HMMs are trained without them. In the present paper, we introduce an HSMM, which is an HMM with explicit state duration probability distributions, into the HMM-based speech synthesis system. Experimental results show that the use of HSMM training improves the naturalness of the synthesized speech.
منابع مشابه
MLLR adaptation for hidden semi-Markov model based speech synthesis
This paper describes an extension of maximum likelihood linear regression (MLLR) to hidden semi-Markov model (HSMM) and presents an adaptation technique of phoneme/state duration for an HMM-based speech synthesis system using HSMMs. The HSMM-based MLLR technique can realize the simultaneous adaptation of output distributions and state duration distributions. We focus on describing mathematical ...
متن کاملAn Overview of Nitech HMM-based for Blizzard Challen
In the present paper, hidden Markov model (HMM) based speech synthesis system developed in Nagoya Institute of Technology (Nitech-HTS) for a competition of text-to-speech synthesis systems using the same speech databases, named Blizzard Challenge 2005, is described. We show an overview of the basic HMM-based speech synthesis system and then recent developments to the latest one such as STRAIGHT...
متن کاملA Hidden Semi-Markov Model-Based Speech Synthesis System
Recently, a statistical speech synthesis system based on the hidden Markov model (HMM) has been proposed. In this system, spectrum, excitation, and duration of human speech are modeled simultaneously by context-dependent HMMs and speech parameter vector sequences are generated from the HMMs themselves. This system defines a speech synthesis problem in a generative model framework and solves it ...
متن کاملAn overview of nitech HMM-based speech synthesis system for blizzard challenge 2005
In the present paper, hidden Markov model (HMM) based speech synthesis system developed in Nagoya Institute of Technology (Nitech-HTS) for a competition of text-to-speech synthesis systems using the same speech databases, named Blizzard Challenge 2005, is described. We show an overview of the basic HMM-based speech synthesis system and then recent developments to the latest one such as STRAIGHT...
متن کاملVisual control of hidden-semi-Markov-model based acoustic speech synthesis
We show how to visually control acoustic speech synthesis by modelling the dependency between visual and acoustic parameters within the Hidden-Semi-Markov-Model (HSMM) based speech synthesis framework. A joint audio-visual model is trained with 3D facial marker trajectories as visual features. Since the dependencies of acoustic features on visual features are only present for certain phones, we...
متن کامل